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Dissipative Abelian sandpiles and random walks
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We show that the dissipative Abelian sandpile on a graman be related to a random walk on a graph that
consists ofC extended with a trapping site. From this relation it can be shown, using exact results and a scaling
assumption, that the correlation length exponeiwof the dissipative sandpiles always equald,1/whered,,
is the fractal dimension of the random walker. This leads to a new understanding of the known result that
=1/2 on any Euclidean lattice. Our result is, however, more general, and as an example we also present exact
data for finite Sierpinski gaskets, which fully confirm our predictions.
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Self-organized criticality(SOQ [1,2] is the phenomenon thatv~1/2 ind=2. The same authors argued on the basis of
in which a slowly driven system with many interacting de- a renormalization group calculation that1/2 on any Eu-
grees of freedom evolves spontaneously into a critical statelidean lattice. This result was recently proven exaf2ly].
characterized by long range correlations in space and time In this Rapid Communication we study further the Abe-
(for introductory reviews, sef8,4]). This phenomenon has lian sqndplle model with dissipation. We begm. by shovv_lng
by now been recognizetbr conjectured to existin many that this problem can be related to that of a suitably defined

(models of natural phenomena such as earthqudBésor- random walker on a lattice with a trap. This result is quite
est fired 6], speciation of lifg 7], etc. Moreover, the possible genergl and extean an earlier mapping between conservative
presence of SOC can be investigated in experimentally co sandpiles and resistor networksr equivalently theq—0

trollable phenomena such as the Barkhausen effictrice otts m_ode)l [14]. I_ndeed_, we will sh(_)w that send_lng t_he_
piles[9], and so on. dissipation to zero is equivalent to taking the long time limit

A question which is, however, still poorly understood is, of_the ek walk. problem.llt therefore comes as no sur-
What precisely are the necessary ingredients a sy&em prise that thesandpile correlatl_on Iength_ exponemtcan be_
mode) must have for it to become self-organized critical? €/ated to the exponentdy, which describes the asymptotic

For example, one may ask whether or not the dissipation Ot?ehavior of the random walker. Our result implies that

“energy” (or a similar quantity destroys long range corre- — 1/2 for any Euclidean lattice. We thus recover in this situ-

lations. This problem has been studied extensively in thé&ion the conclusion of Ref$19,21 but add a new under-

Olami-Feder-ChristensefOFC) model of earthquakeS]. standing of it. However, our prediction i§ more general ar_1d
Numerical studies originally seemed to show convincingly?0lds also on, for example, fractal lattices, or for certain
that even in the presence of a small amount of dissipation thiypes Of random san_dp|lles. ,AS an examplg, we performed
model remains critical10]. Later, it was shown exactly that calculations on the Sierpinski gasket for whid is known

at least in mean field, the OFC model is only critical when its€*@Cctly @y =In5/In2). Our data are consistent with the pre-
energy is conserved 1]. Most recently it was argued, on the diction v=1/d,,.

basis of a study of branching rates, that the same is true on a | h€ Abelian sandpile model on an arbitrary graplwith
finite dimensional latticé12]. N vertices is defined as follows. On each vert&of the

The situation is less controversial for sandpile modelsdraph, there exists a height variaziethat assumes integer
which form the paradigmatic examples of systems showingva“ﬂes and_has the mterpre_tatlon of energy or nur_nber of sand
SOC. In the past decade much progress has been made in @#&@ins at sitd. The dynamics of the model consists of two
theoretical understanding of this type of models. This is esSteps. First, we choose any sitat random, and add one
pecially true for the Abelian moddlL,2], where, following ~ 9rain of sand to that site, i.&,—z+ 1. When at a given site
the original work of Dhar(13], a mathematical formalism . the height of sand exceeds a thresheid, i.e. for z,
was developed10-14 that allows an exact calculation of ~Zic. We say that that site becomes unstable and then the
several properties of the model, such as height probabilitie§"@ins of sand om are distributed among neighboring sites.
[14,15, wave propertie§16,17], the upper critical dimen- This process, calledoppling is specified by a matrix;;
sion[18], and so on. such that

The role of conservatiofof sand in sandpile models was 77 — A (1)
first studied numerically by Ghaffagt al.[19], who found s m
that any amount of dissipation destroys the presence of SOThe elements);; satisfyA;;>0 andA;;<0 wheni#j, and
in the model. Recently, it was proven that indeed on anythe condition=;A;;=0, which guarantees that no sand is
hypercubic lattice a nonconservative Abelian sandpile modetreated in the toppling process. We will also limit ourselves
is not critical[20]. There exists therefore a correlation lengthto cases in whick\ is symmetric. Through toppling, neigh-
¢ in the system which diverges when the dissipation ratéhoring sites can become unstable and in this wayaea-
goes to zero. This allows the introduction of an exponent lanche of topplings is generated. A new grain of sand is
that describes this divergence. Numericdllg] it was found  added only when the avalanche is over, i.e., all sites are
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stable again. Finally, grains of sand can leave the systewhere
through certain boundary sites. These are necessary for the

model to reach a steady state asymptotically. The number of Ajj  iel, jel, i#]

topplings in a given avalancteeis a random variable whose D.={ —¢ i=T, jeLl 6)
distribution P(s,N) is now known to have rich, multifractal ! e

propertieg 22]. In the present paper we will, however, only 0 if j=T.

be interested in the first momefg) of this distribution. An
exact expression for this quantity can be obtained as follow:
[13]. One first introduces the matri®, which is the inverse
of A. The elementG;; can be interpreted as the expected Djj=— X Dij=— X Aj+¢=A.
number of topplings at sitewhen a grain of sand has been e lL*i#] e Ll,iz]

dropped at site [13]. From this interpretation one obtains

gor the diagonal elements we take

In this way, and because of the conditions we put on the
1 matrix A, D has all the necessary propertisge, e.g.[23])
(s)= N E 2 Gj . (2)  of a stochastic matrix.
el jeL To solve master equatiofb), it is common([23]) to in-
troduce the Green functiofs;(s), which is the Laplace

One of the results of this paper will be a scaling eXpreSSieranSform ofP(i k1)

for (s) for the dissipative sandpile model.

To continue we will reason further with the case of a w
graph where each sitapart from the boundary sites con- Gi(s)= f P(i,k,t)e stdt. @)
nected to a fixed number of neighbarswWe takez,.=z,Vi. 0
For example, on the square lattice or on the Sierpinski gaskert
z=4. In the case of the conservative sandpile model we
choose the matriA as

he Green function obeys the linear equation

. Sik—SGi(s)= > Dj;Gj(s)
Z if i=] ]

AiC,J: —1 i andj areneighbors (3 whose formal solution is
0 otherwise

Gik(s)=

[in the rest of this paper a superscripfrespectivelyd) will s1+ D). ' ®
refer to the conservativeespectively dissipatiyecasd. On 1k
the other hand, following Tsuchiya and Katdi20], we

, S , This solution can be written in terms of the eigenvaldes
choose in the case of a dissipative sandpile model

and associated eigenvectars of D as
zyl if =] 1
Adj=¢ —¢ i and| areneighbors (4) Gik(5)=§a: m(ua)i(ua)k- €)
0 otherwise,

Notice that because of structui®, the spectrum of the ma-
with y>1. In this way, at each topplingz(y—1) grains of  trix consists of the spectrum df and one zero eigenvalue,
sand disappear. which we will denote a3 (. The eigenvector associated with

With each toppling matrix\;; we can associate a random this zero eigenvalue is completely concentrated on the trap,
walk problem. To do this we have to extend the graphith  (Uo); =& r. On the other hand, for the eigenvectors associ-
one extra site, denoted dswhich, as we will see immedi- ated with the other eigenvalues, we have,)q=0,a#0.
ately, will get the properties of a trap for the random walker.Therefore Eq(9) becomes
Let £L*=LUT. We then define a continuous time random
walker on £* using the matrix elementd;; as transition
rates. More concrete, the rate by which the walker jumps
fromj toi is given by —Aj; for any two sites onC. Second,
the walker jumps from a sit¢e £ to the trapT with rate  where
¢;=2;A; . Once the walker reachdsit stays there forever.

Let P(i,k,t) be the conditional probability that the walker ~ . E
is at sitei € £* at timet given that he was ik att=0. This Gik(s)= 2, W) (Ug)i(Ug)k-
conditional probability then evolves according to the master
equation We can therefore relate the matrix eleme@tsappearing
in Eq. (2) to the elements of the Green function as

1 -
Gik(s)= g5i,T5k,T+Gik(5)a (10
(11

P(i,k,t):—Ej Di;P(j.k,b), (5) GGy (5=0). 12
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We now have all the necessary ingredients to discuss thebtained on Euclidean lattices with elementary Fourier tech-
dissipative sandpiles whose toppling matrix is given in Eg.niques. In one dimension one obtains, for example,
(4). Comparing Eq(3) with Eq. (4), we immediately see that
2

c — —ont gj
Af=CAf +2L(y=1) 5. (13 Polk =151 ng n§=:l .

This simple relation implies that the eigenvectorsAdfand 7
A° are the same and that their eigenvalues are trivially rewhere w,=2[1— cosfin/L+1)]. Similar results can easily
lated by a multiplicative and an additive constant. Thereforepe obtained in higher dimensions. In the scaling lintit,
we get for the inverse ozl&ﬂ using Eq.(12) and the general — o« t—o, it is easy to see that this probability is of the
definition (11), form

~ 1., 1 [kt
Gﬁ=6$s=m=zeus=ay—ny (14) P&KU*[F<[ﬂ?>- (18)

This is our main result. It shows the relation between theg, any Euclidean lattice, the fractal dimensidy of the
dissipative sandpile model and the random walker associatque of random walker th:’:lt we consider here equals 2. On
with the conservativesandpile model but as=2z(y—1).  {he pasis of exact results such as Erg), and on general
Taking the conservative limity—1 then corresponds pre- nhysical intuition, it can be expected that for the random
cisely to taking the limit— in the random walk problem. 5jkers that are connected with the trap only through some

Since that asymptotic limit is determined by the scaling €Xhoundary sitesP§(k,t) has in general the following scaling
ponentd,, of the random walk, it can already be eXpeCtedbehavior:

that the correlation length exponentis related tod,, .

The precise connection between the two exponents can be 1 ¢
obtained as follows. We will calculate) as given in Eq(2) S(k,t)~—H| —, _> , (19
for the dissipative sandpile defined in E4). Summing over L\ L Lo

i, using Eqs(14) and(7) we get _ . _ _
with H some scaling function. Hemd is the(fracta) dimen-
N a1y sion of the gra_lph. _ _ _
> Gik:Z olk,t)e” 27" +dt, (15 After inserting Eq.(19) in Eq. (15), making a suitable
et 0 change of variables, and also performing the resulting sum

i followi ling form fofs):
where PS(k,t)=3,_-P(i k,t) is the probability that the overk, we finally get the following scaling form fofs)

walker that started d has not yet been trapped at timélo ()~ LIwR(L (y— 1)), (20)
calculatePg(k,t) it is important to first consider the type of
random walk that we have to investigate. Because of relatiowhereR is a scaling function.
(14), we have to work with the random walker associated From Eq.(20), we see that for the conservative case,
with the matrixA° of the conservative sandpile. The result- =1, and on an Euclidean lattiges)~ L2, which is an old
ing random walker is therefore such that only boundary sites;esult obtained by Dharl3]. For y>1, we conclude from
which in the conservative case are the only ones where sargh. (20) that the exponenw that describes the crossover
leaves the system, are connected with the trap. Randometween dissipative and conservative sandpiles equajs 1/
walks of this type, at least on an Euclidean lattice, are easy to On an Euclidean lattice, we recover in this way a result
study. We will come back to that later on. first determined with an approximate renormalization tech-
First, we consider, however, the limit—c. In that limit  nique[19] and recently obtained exacfl21]. Our result(20)
a random walker starting on a typical site will not be trappedis, however, much more general. The relatios 1/d,,
for any finitet, since only the boundary sites at infinity are should also hold on, e.g., fractal lattices. As an example, we
connected with the trap. Therefore, one Hag(k,t)=1.  checked this scaling on finite Sierpinski gasket. In particular,
Then the integral in Eq(15) can immediately be performed, we considered Sierpinski gaskets mfgenerations withn
and since the result does not dependkame get <7. For each of these we calculated the mafﬂﬁ< by cal-
culating the inverse cmﬂ- using a computer. This we did for
(16) several values ofy. From GY we then calculateds) using
Eq. (2). Finally, we plotted(s)L % versusL(y—1)Ydw,
These numerically exact results are shown in Fig. 1. For the
This relation was first derived on thie=2 square lattice in ~ Sierpinski gasked,=In5/In2. As can be seen the agree-
Ref. [20] but we now see that it is quite general. In fact, it ment with the scaling prediction is excellent. Together with
shows that the dissipative sandpilenisver critical the known result for the square lattice case, these data give
We now turn back to the case that the number of sites onery strong support for the conjecture that 1/d,, .
the graph is finite, in which cage§(k,t) will be a decreasing One may now ask how general our prediction #as, and
function of time. Explicit results for this quantity can be whether one can imagine situations in which it does not hold

&=zZo-1
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Q02" = depends on the particular values gf what is the precise

value ofd,, or even whethed,, can still be defined in a
meaningful way. It is also not clear in which cases a scaling
assumption such as E@L9) remains valid. But we expect
that for many cases that are of interest from the sandpile
point of view, our result will hold, eventually with an expo-
nent v that depends on the particular distributionwnfval-
I ] ues.
0.005 |- ] As an example, take a matribxﬂ whose diagonal ele-

[ \ ] ments are constructed in the following random way. With

I . ] probability p we takeAﬁ=z§y1, while with probability 1
° ‘1'0‘ e 3‘0 = ‘4‘0‘ =sie 5‘0 o —p we takeA?=2z{7y,. In the related random walker, and

L gy for y,>v,, the sites that are connected with the trap are

randomly distributed over the lattice with probabilipy For
FIG. 1. Plot of(s)L ~% versusL (y— 1) for the non conser- such a random walk, it has been shown thadinl, d,

0.015 |-

0.01

ow
<s> L

T —
Wowooooooooo@ooooxo ° 0 ©
XX XK X 1
1

vative sandpile model on the Sierpinski gasket with =3 [24]. Hence, we expect that for this kind of dissipative

=2,4,...,128, and different values of. sandpiler=1/3 (instead of 1/2) ind=1. We are currently
verifying this prediction. The results will be published else-
where.

. Besides scaling assumptidd9), the crucial step in the In summary, we have shown how to relate a dissipative

derivation is relation(13) between the conservative and dis- Sandpile model with an associated random walker. Using re-
sipative toppling matrices. In a more general case one ma§ults from the theory of random walks we were then able to

consider a toppling matrix of the form show thatv=1/d,, for a large class of nonconservative sand-
pile models. This result is in agreement with the available

zyi¢ if i=] evidence on Euclidean lattices and on the Sierpinski gasket.

d _ . . . Since the knowledge on random walks is quite extensive, we

Afj={ —¢ 1 andj areneighbors  (21)  gyspect that many interesting phenomena in dissipative sand-
0 otherwise, piles can now be obtained using the link with random walks.

Note added in proofWhen this paper was under review,
wherev; is site depender{the same would hold for a graph it was pointed out to us that the resut=1/2 for Euclidena

in which the coordination number is site dependlehet lattices was also obtained using other approaches in Refs.
vm=Min;y . For this case Eq14) gets replaced by [25] and[26].

1 We would like to thank M. Katori for bringing our atten-
Gl="G' (s=z(yy—1)) tion to this problem and for useful discussions. We thank J.
i ij m ’ . . .

{ Hooyberghs for useful information on random walks with

_ traps. We also thank V. B. Priezzhev for a critical reading of
whereG'" is the Green function of a random walker where an earlier version of this manuscript. Finally, we thank the

from sitei one enters the trap with rat&(y,— yy). It then  Inter University Attraction Poles for financial support.

[1] P. Baket al, Phys. Rev. Lett59, 381(1987. [13] D. Dhar, Phys. Rev. Let64, 1613(1990.
[2] P. Baket al, Phys. Rev. A38, 364 (1988. [14] S.N. Majumdar and D. Dhar, Physica¥85, 129(1992.
[3] H. Jensen Self-organized Criticality(Cambridge University [15] V.B. Priezzhev, J. Stat. Phyg4, 955(1994).

Press, Cambridge, England, 1998 [16] D. Dhar and S.S. Manna, Phys. Rev4g 2684(1994).
[4] P. Bak,How Nature WorkgSpringer-Verlag, Berlin, 1996 [17] E.V. Ivashkevichet al,, Physica A209, 347 (1994.
[5] Z. Olami et al, Phys. Rev. Lett68, 1224(1992. [18] V.B. Priezzhev, J. Stat. Phy88, 667 (2000.
[6] B. Drossel and F. Schwabl, Phys. Rev. Le®9, 1629 [19] P. Ghaffariet al, Phys. Rev. B56, 6702(1997).

(1992. [20] T. Tsuchiya and M. Katori, Phys. Rev. @, 1183(2000.
[7] P. Bak and K. Sneppen, Phys. Rev. L&tt, 4083(1993. [21] M. Katori (unpublisheg

[8] S. Zapperiet al, Phys. Rev. B58, 6353(1998. [22] M. De Menechet al, Phys. Rev. E58, 2677 (1998; C.
[9] V. Fretteet al., Nature(London 397, 49 (1996. Tebaldiet al, Phys. Rev. Lett83, 3952(1999; M. de Menech
[10] J. Socolaet al, Phys. Rev. #7, 2366(1993; P. Grassberger, and A.L. Stella, Phys. Rev. B2, R4528(2000.
ibid. 49, 2436(1994; A. Middleton and C. Tang, Phys. Rev. [23] N. Van Kampen Stochastic Processes in Physics and Chem-
Lett. 74, 742(1995. istry (North-Holland, Amsterdam, 1984
[11] H.-M. Broker and P. Grassberger, Phys. Rev5& 3944  [24] G. Weiss and S. Havlin, J. Stat. Pha¥, 17 (1984).
(1997; M. Chabanol and V. Hakimipid. 56, R2343(1997. [25] A. Vespignani and S. Zapperi, Phys. Rev. Let8, 4739
[12] J. de Carvalho and C. Prado, Phys. Rev. L&, 4006 (1997.

(2000. [26] A. Vespignaniet al,, Phys. Rev. Lett81, 5676(1998.

030301-4



