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Dissipative Abelian sandpiles and random walks
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We show that the dissipative Abelian sandpile on a graphL can be related to a random walk on a graph that
consists ofL extended with a trapping site. From this relation it can be shown, using exact results and a scaling
assumption, that the correlation length exponentn of the dissipative sandpiles always equals 1/dw , wheredw

is the fractal dimension of the random walker. This leads to a new understanding of the known result thatn
51/2 on any Euclidean lattice. Our result is, however, more general, and as an example we also present exact
data for finite Sierpinski gaskets, which fully confirm our predictions.
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Self-organized criticality~SOC! @1,2# is the phenomenon
in which a slowly driven system with many interacting d
grees of freedom evolves spontaneously into a critical st
characterized by long range correlations in space and
~for introductory reviews, see@3,4#!. This phenomenon ha
by now been recognized~or conjectured to exist! in many
~models of! natural phenomena such as earthquakes@5#, for-
est fires@6#, speciation of life@7#, etc. Moreover, the possibl
presence of SOC can be investigated in experimentally c
trollable phenomena such as the Barkhausen effect@8#, rice
piles @9#, and so on.

A question which is, however, still poorly understood
What precisely are the necessary ingredients a system~or a
model! must have for it to become self-organized critica
For example, one may ask whether or not the dissipation
‘‘energy’’ ~or a similar quantity! destroys long range corre
lations. This problem has been studied extensively in
Olami-Feder-Christensen~OFC! model of earthquakes@5#.
Numerical studies originally seemed to show convincin
that even in the presence of a small amount of dissipation
model remains critical@10#. Later, it was shown exactly tha
at least in mean field, the OFC model is only critical when
energy is conserved@11#. Most recently it was argued, on th
basis of a study of branching rates, that the same is true
finite dimensional lattice@12#.

The situation is less controversial for sandpile mod
which form the paradigmatic examples of systems showi
SOC. In the past decade much progress has been made
theoretical understanding of this type of models. This is
pecially true for the Abelian model@1,2#, where, following
the original work of Dhar@13#, a mathematical formalism
was developed@10–14# that allows an exact calculation o
several properties of the model, such as height probabil
@14,15#, wave properties@16,17#, the upper critical dimen-
sion @18#, and so on.

The role of conservation~of sand! in sandpile models was
first studied numerically by Ghaffariet al. @19#, who found
that any amount of dissipation destroys the presence of S
in the model. Recently, it was proven that indeed on a
hypercubic lattice a nonconservative Abelian sandpile mo
is not critical@20#. There exists therefore a correlation leng
j in the system which diverges when the dissipation r
goes to zero. This allows the introduction of an exponenn
that describes this divergence. Numerically@19# it was found
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thatn'1/2 in d52. The same authors argued on the basis
a renormalization group calculation thatn51/2 on any Eu-
clidean lattice. This result was recently proven exactly@21#.

In this Rapid Communication we study further the Ab
lian sandpile model with dissipation. We begin by showi
that this problem can be related to that of a suitably defin
random walker on a lattice with a trap. This result is qu
general and extends an earlier mapping between conserv
sandpiles and resistor networks~or equivalently theq→0
Potts model! @14#. Indeed, we will show that sending th
dissipation to zero is equivalent to taking the long time lim
of the random walk problem. It therefore comes as no s
prise that the~sandpile! correlation length exponentn can be
related to the exponent 1/dw , which describes the asymptoti
behavior of the random walker. Our result implies thatn
51/2 for any Euclidean lattice. We thus recover in this si
ation the conclusion of Refs.@19,21# but add a new under
standing of it. However, our prediction is more general a
holds also on, for example, fractal lattices, or for certa
types of random sandpiles. As an example, we perform
calculations on the Sierpinski gasket for whichdw is known
exactly (dw5 ln 5/ln 2). Our data are consistent with the pr
diction n51/dw .

The Abelian sandpile model on an arbitrary graphL ~with
N vertices! is defined as follows. On each vertexi of the
graph, there exists a height variablezi that assumes intege
values and has the interpretation of energy or number of s
grains at sitei. The dynamics of the model consists of tw
steps. First, we choose any sitei at random, and add on
grain of sand to that site, i.e.,zi→zi11. When at a given site
i, the height of sand exceeds a thresholdzic , i.e. for zi
.zic , we say that that site becomes unstable and then
grains of sand oni are distributed among neighboring site
This process, calledtoppling, is specified by a matrixD i j
such that

zj→zj2D i j . ~1!

The elementsD i j satisfyD i i .0 andD i j <0 wheniÞ j , and
the condition( jD i j >0, which guarantees that no sand
created in the toppling process. We will also limit ourselv
to cases in whichD is symmetric. Through toppling, neigh
boring sites can become unstable and in this way anava-
lanche of topplings is generated. A new grain of sand
added only when the avalanche is over, i.e., all sites
©2001 The American Physical Society01-1
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stable again. Finally, grains of sand can leave the sys
through certain boundary sites. These are necessary fo
model to reach a steady state asymptotically. The numbe
topplings in a given avalanches is a random variable whos
distributionP(s,N) is now known to have rich, multifracta
properties@22#. In the present paper we will, however, on
be interested in the first moment^s& of this distribution. An
exact expression for this quantity can be obtained as follo
@13#. One first introduces the matrixG, which is the inverse
of D. The elementGi j can be interpreted as the expect
number of topplings at sitej when a grain of sand has bee
dropped at sitei @13#. From this interpretation one obtains

^s&5
1

N (
i PL (

j PL
Gi j . ~2!

One of the results of this paper will be a scaling express
for ^s& for the dissipative sandpile model.

To continue we will reason further with the case of
graph where each site~apart from the boundary sites! is con-
nected to a fixed number of neighborsz. We takezic5z,; i .
For example, on the square lattice or on the Sierpinski ga
z54. In the case of the conservative sandpile model
choose the matrixD as

D i , j
c 5H z if i 5 j

21 i and j are neighbors

0 otherwise

~3!

@in the rest of this paper a superscriptc ~respectivelyd) will
refer to the conservative~respectively dissipative! case#. On
the other hand, following Tsuchiya and Katori@20#, we
choose in the case of a dissipative sandpile model

D i , j
d 5H zgz if i 5 j

2z i and j are neighbors

0 otherwise,

~4!

with g.1. In this way, at each topplingzz(g21) grains of
sand disappear.

With each toppling matrixD i j we can associate a rando
walk problem. To do this we have to extend the graphL with
one extra site, denoted asT which, as we will see immedi-
ately, will get the properties of a trap for the random walk
Let L !5LøT. We then define a continuous time rando
walker on L ! using the matrix elementsD i j as transition
rates. More concrete, the rate by which the walker jum
from j to i is given by2D i j for any two sites onL. Second,
the walker jumps from a sitej PL to the trapT with rate
f j5( iD i j . Once the walker reachesT, it stays there forever

Let P( i ,k,t) be the conditional probability that the walke
is at sitei PL ! at timet given that he was ink at t50. This
conditional probability then evolves according to the mas
equation

Ṗ~ i ,k,t !52(
j

Di j P~ j ,k,t !, ~5!
03030
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where

Di j 5H D i j i PL, j PL, iÞ j

2f j i 5T, j PL
0 if j 5T.

~6!

For the diagonal elements we take

D j j 52 (
i PL !,iÞ j

Di j 52 (
i PL,iÞ j

D i j 1f j5D j j .

In this way, and because of the conditions we put on
matrix D, D has all the necessary properties~see, e.g.,@23#!
of a stochastic matrix.

To solve master equation~5!, it is common~@23#! to in-
troduce the Green functionGik(s), which is the Laplace
transform ofP( i ,k,t),

Gik~s!5E
0

`

P~ i ,k,t !e2stdt. ~7!

The Green function obeys the linear equation

d ik2sGik~s!5(
j

Di j Gjk~s!

whose formal solution is

Gik~s!5S 1

s11D D
ik

. ~8!

This solution can be written in terms of the eigenvaluesla
and associated eigenvectorsua of D as

Gik~s!5(
a

1

~s1la!
~ua! i~ua!k . ~9!

Notice that because of structure~6!, the spectrum of the ma
trix consists of the spectrum ofD and one zero eigenvalue
which we will denote asl0. The eigenvector associated wit
this zero eigenvalue is completely concentrated on the t
(u0) i5d i ,T . On the other hand, for the eigenvectors asso
ated with the other eigenvalues, we have (ua)T50,aÞ0.
Therefore Eq.~9! becomes

Gik~s!5
1

s
d i ,Tdk,T1G̃ik~s!, ~10!

where

G̃ik~s!5 (
aÞ0

1

~s1la!
~ua! i~ua!k . ~11!

We can therefore relate the matrix elementsGi j appearing
in Eq. ~2! to the elements of the Green function as

Gi j 5G̃i j ~s50!. ~12!
1-2
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We now have all the necessary ingredients to discuss
dissipative sandpiles whose toppling matrix is given in E
~4!. Comparing Eq.~3! with Eq. ~4!, we immediately see tha

D i j
d 5zD i j

c 1zz~g21!d i j . ~13!

This simple relation implies that the eigenvectors ofDd and
Dc are the same and that their eigenvalues are trivially
lated by a multiplicative and an additive constant. Therefo
we get for the inverse ofD i j

d using Eq.~12! and the genera
definition ~11!,

Gi j
d 5G̃i j

d ~s50!5
1

z
G̃i j

c
„s5z~g21!…. ~14!

This is our main result. It shows the relation between
dissipative sandpile model and the random walker associ
with the conservativesandpile model but ats5z(g21).
Taking the conservative limitg→1 then corresponds pre
cisely to taking the limitt→` in the random walk problem
Since that asymptotic limit is determined by the scaling
ponentdw of the random walk, it can already be expect
that the correlation length exponentn is related todw .

The precise connection between the two exponents ca
obtained as follows. We will calculatês& as given in Eq.~2!
for the dissipative sandpile defined in Eq.~4!. Summing over
i, using Eqs.~14! and ~7! we get

(
i PL

Gik
d 5

1

zE0

`

P0
c~k,t !e2z(g21)tdt, ~15!

where P0
c(k,t)5( i PLP( i ,k,t) is the probability that the

walker that started atk has not yet been trapped at timet. To
calculateP0

c(k,t) it is important to first consider the type o
random walk that we have to investigate. Because of rela
~14!, we have to work with the random walker associat
with the matrixDc of the conservative sandpile. The resu
ing random walker is therefore such that only boundary si
which in the conservative case are the only ones where s
leaves the system, are connected with the trap. Ran
walks of this type, at least on an Euclidean lattice, are eas
study. We will come back to that later on.

First, we consider, however, the limitN→`. In that limit
a random walker starting on a typical site will not be trapp
for any finite t, since only the boundary sites at infinity a
connected with the trap. Therefore, one hasP0

c(k,t)51.
Then the integral in Eq.~15! can immediately be performed
and since the result does not depend onk we get

^s&5
1

zz~g21!
. ~16!

This relation was first derived on thed52 square lattice in
Ref. @20# but we now see that it is quite general. In fact,
shows that the dissipative sandpile isnever critical.

We now turn back to the case that the number of sites
the graph is finite, in which caseP0

c(k,t) will be a decreasing
function of time. Explicit results for this quantity can b
03030
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obtained on Euclidean lattices with elementary Fourier te
niques. In one dimension one obtains, for example,

P0
c~k,t !5

2

L11 (
j 51

L

(
n51

L

e2vnt sinS npk

L11D sinS np j

L11D ,

~17!

where vn52@12cos(np/L11)#. Similar results can easily
be obtained in higher dimensions. In the scaling limit,L
→`,t→`, it is easy to see that this probability is of th
form

P0
c~k,t !'

1

L
FS k

L
,

t

L2D . ~18!

On any Euclidean lattice, the fractal dimensiondw of the
type of random walker that we consider here equals 2.
the basis of exact results such as Eq.~18!, and on general
physical intuition, it can be expected that for the rando
walkers that are connected with the trap only through so
boundary sites,P0

c(k,t) has in general the following scalin
behavior:

P0
c~k,t !'

1

Ldf
HS k

L
,

t

Ldw
D , ~19!

with H some scaling function. Heredf is the~fractal! dimen-
sion of the graph.

After inserting Eq.~19! in Eq. ~15!, making a suitable
change of variables, and also performing the resulting s
over k, we finally get the following scaling form for̂s&:

^s&;LdwR„L~g21!1/dw
…, ~20!

whereR is a scaling function.
From Eq.~20!, we see that for the conservative case,g

51, and on an Euclidean latticês&;L2, which is an old
result obtained by Dhar@13#. For g.1, we conclude from
Eq. ~20! that the exponentn that describes the crossove
between dissipative and conservative sandpiles equals 1dw .

On an Euclidean lattice, we recover in this way a res
first determined with an approximate renormalization te
nique@19# and recently obtained exactly@21#. Our result~20!
is, however, much more general. The relationn51/dw
should also hold on, e.g., fractal lattices. As an example,
checked this scaling on finite Sierpinski gasket. In particu
we considered Sierpinski gaskets ofn generations withn
<7. For each of these we calculated the matrixGi j

d by cal-
culating the inverse ofD i j

d using a computer. This we did fo
several values ofg. From Gd we then calculated̂s& using
Eq. ~2!. Finally, we plotted^s&L2dw versusL(g21)1/dw.
These numerically exact results are shown in Fig. 1. For
Sierpinski gasketdw5 ln 5/ln 2. As can be seen the agre
ment with the scaling prediction is excellent. Together w
the known result for the square lattice case, these data
very strong support for the conjecture thatn51/dw .

One may now ask how general our prediction forn is, and
whether one can imagine situations in which it does not h
1-3
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. Besides scaling assumption~19!, the crucial step in the
derivation is relation~13! between the conservative and di
sipative toppling matrices. In a more general case one m
consider a toppling matrix of the form

D i , j
d 5H zg iz if i 5 j

2z i and j are neighbors

0 otherwise,

~21!

whereg i is site dependent~the same would hold for a grap
in which the coordination number is site dependent!. Let
gm5minigi . For this case Eq.~14! gets replaced by

Gi j
d 5

1

z
G̃i j

r
„s5z~gm21!…,

whereG̃r is the Green function of a random walker whe
from site i one enters the trap with ratezz(g i2gm). It then

FIG. 1. Plot of^s&L2dw versusL(g21)1/dw for the non conser-
vative sandpile model on the Sierpinski gasket withL
52,4, . . .,128, and different values ofg.
,
.

03030
ay

depends on the particular values ofg i what is the precise
value of dw or even whetherdw can still be defined in a
meaningful way. It is also not clear in which cases a scal
assumption such as Eq.~19! remains valid. But we expec
that for many cases that are of interest from the sand
point of view, our result will hold, eventually with an expo
nentn that depends on the particular distribution ofg i val-
ues.

As an example, take a matrixD i j
d whose diagonal ele-

ments are constructed in the following random way. W
probability p we takeD i i

d 5zzg1, while with probability 1
2p we takeD i i

d 5zzg2. In the related random walker, an
for g2.g1, the sites that are connected with the trap a
randomly distributed over the lattice with probabilityp. For
such a random walk, it has been shown that ind51, dw
53 @24#. Hence, we expect that for this kind of dissipativ
sandpilen51/3 ~instead of 1/2) ind51. We are currently
verifying this prediction. The results will be published els
where.

In summary, we have shown how to relate a dissipat
sandpile model with an associated random walker. Using
sults from the theory of random walks we were then able
show thatn51/dw for a large class of nonconservative san
pile models. This result is in agreement with the availa
evidence on Euclidean lattices and on the Sierpinski gas
Since the knowledge on random walks is quite extensive,
suspect that many interesting phenomena in dissipative s
piles can now be obtained using the link with random wal

Note added in proof.When this paper was under review
it was pointed out to us that the resultn51/2 for Euclidena
lattices was also obtained using other approaches in R
@25# and @26#.
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